nasiona marihuany

Szczepienie chmielu na konopi

Wyszukiwarka Forumowa:

Farmer's

Well-known member
Rejestracja
Cze 7, 2010
Postów
117
Buchów
0
Hehe jak jesteś takim kozakiem to tłumacz sobie;) i nie spamuj
 
S

sub

Guest
Farmer's napisał:
1.oddziel biochemicznie wszystkie enzymy niezbędne do produkcji THC,

Trochę roboty będzie bo z tego co mi wiadomo nie wszystkie zostały jeszcze zidentyfikowane :)
Nie ma dostępnych sekwencji.

Z dostępnych danych... to "chyba" jest najbardziej zaawansowane:

http://jxb.oxfordjournals.org/content/60/13/3715.short

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736886/

użyli skunka#1

122.jpg



hmm... co oni tam wymodzili..

123.jpg


dużo tekstu::

ten kawałek brzmi ciekawie i jest w temacie watka:

Potential utility of comparing gland ESTs from hop and Cannabis

The PKSs and many other genes identified in this study are closely related to those from hop (Humulus lupulus). Humulus and Cannabis are monotypic sister genera in the family Cannabaceae (Datwyler and Weiblen, 2004). Glandular trichomes located on the inflorescence bracts of both Humulus and Cannabis are the location of unique PKS-derived secondary metabolism (Nagel et al., 2008; Wang et al., 2008 ). Hop glands produce the bitter acid humulone, which is important for beer flavour, and the prenylated chalcone xanthohumol, which has several potential health beneficial properties (Stevens and Page, 2004). The biochemical pathways leading to THCA, xanthohumol, and humulone have common steps that include polyketide synthases and prenyltransferases. It is probable that these plants share other homologous biochemical pathways given their close ancestry. Information from Cannabis ESTs has the potential to improve the understanding of hop biochemical pathways as well.

Farmer's napisał:
2.przeprowadź N-końcowe sekwencjonowanie wyizolowanych enzymów, a potem przeprowadź PCR ( łańcuchowa reakcja polimerazy) i powiel geny,

Trzeba założyć fundacje zbierająca fundusze na sprzęt.

Farmer's napisał:
4.użyj Agrobacterium tumefaciens do zainfekowania skaleczonych drzewek cytrusowych. Dzięki mechanizmowi podobnemu do koniugacji DNA z bakterii zostanie przetransportowane do komórek gospodarza, czyli rośliny. Następnie fragmenty te zostaną włączone do genomu pomarańczy i możliwe do dziedziczenia

W naszych warunkach klimatycznych lepsza będzie pokrzywa :eek:raz chmiel.
:)

ps: Polecam bardzo fajne:Ktoś sie postarał : http://www.scribd.com/doc/14571756/The-Biotechnology-of-Cannabis-Sativa

szkoda,że to zdjęcie w środku to fake..

124.jpg


to z kolei jest autentyczne :)

https://www.forum.haszysz.com/influence-cultivar-explant-source-and-plant-t16624.html

79.jpg
 
Ostatnia edycja:

Kris_gibon

Well-known member
Rejestracja
Wrz 7, 2009
Postów
93
Buchów
0
skoro odizolujemy geny odpowiedzialne za produkcje thc to można by je wstrzelić każdej roślinie, już sobie wyobrażam pomarańczę gdzie zamiast miąższu wylewa się olejek THC.A trzemu by nie wrzepić tych genów człowiekowi i stworzyć gruczoł odpowiedzialny za regularne dawkowanie thc :):jaraczz::jaraczz::zjarany:
 
G

Gość

Guest
Czytałem cos tam ot ej szyszynce nawet w LV parano mieli chyba ekstrakt z szyszynki. Najfajniejsze, że nie trzeba leciec do dila i płacic 5000zł wystarczy dobra strzykawka i samoopanowanie :lol3:. Trzeba pomyśleć nad forum szyszynkowym ;d gdzie bedą opisywane domowe sposoby ekstrakcji ;d
 
G

Gość

Guest
Ty się chyba przejarałeś. W LVP mieli adrenochron, a szyszynce rozmawiali głównie o tym że łatwo wykitować po przedawkowaniu. Zobacz zresztą gdzie się ona znajduje, jak niby zamierzasz się do niej u siebie dostać?
Pozdro:spalony:
 

Gość.

Well-known member
Rejestracja
Paź 8, 2020
Postów
1,833
Buchów
1,827
Szczepcie, bawcie się. Przykład przejęcia cech z podkładu dyni figolistnej przez ogórka:
 

Buzz Astral

The Weed Ranger
Weteran
Rejestracja
Mar 23, 2018
Postów
1,336
Buchów
3,315
Odznaki
10
Ooo - fajnie, że ktoś wątek odkopał :)
Sam się ostatnio zastanawiałem nad próbą szczepienia konopi, ale z inną konopią.
Próbował ktoś?
 

sub23

nudziarus offtopicus
Weteran
Rejestracja
Paź 6, 2018
Postów
5,172
Buchów
5,061
Ooo - fajnie, że ktoś wątek odkopał :)
Sam się ostatnio zastanawiałem nad próbą szczepienia konopi, ale z inną konopią.
Próbował ktoś?

są zdjęcia na forum z IC mag. Gość uprawiający równikowe sativy _ pod żyrandoledami.
Pomył stary _ wykonanie także _ zdjęć jest mało.
Są i foty ze szczepienia chmielu japońskiego i konopi _ oraz powstałej przy okazji chimery. [ uźwa nawet w tym wątku ;P ]

Szczepcie, bawcie się. Przykład przejęcia cech z podkładu dyni figolistnej przez ogórka:

Miczurin :

Zasługi Miczurina dla nauki są ogromne, udało mu sie mianowicie , jako pierwszemu w świecie skrzyżować jadalne jabłko z jadalną gruszką i otrzymać nowy odporny na mrozy całkowicie niejadalny owoc.

ps: czemu ja nawet nie pr. tego oglądać ? Opowie mi ktoś ? ciągną łacha ? czy nie ? logo wygląda jak z filmu atak pomidorów zabójców. Monty pyton ?? dobra zmusze sie.. ;(

Edit : jeden odmienny : może trafiło ie nasiono nie F1 ? szczepione nie z jednego "krzewu" _ odmiany wyjciowe jak wyglądają ? Przewijałem ale po tekscie nie wygląda na ciągnięcie łacha : .. zreszta kto wie.. kolejne pokolenia nie rozłażą sie mocno formą i kształtem ?? QLT na wielu inne cechy na pojedyńczych a wiele na bardzo złożonych interakcjach _ w f2 mogą byc cuda na kiju jak ie posadzi odpowiednie dużo sztuk ;)

The Doors - Take It As It Comes (2006 Remastered)


Variation in cucumber (Cucumis sativus L.) fruit size and shape results from multiple components acting pre-anthesis and post-pollination​



Planta volume 246, pages641–658(2017)Cite this article


Abstract​

Main conclusion

Morphological, QTL, and gene expression analyses indicate variation in cucumber fruit size and shape results from orientation, timing, and extent of cell division and expansion, and suggest candidate gene factors.
Variation in cucumber (Cucumis sativus L.) fruit size and shape is highly quantitative, implicating interplay of multiple components. Recent studies have identified numerous fruit size and shape quantitative trait loci (QTL); however, underlying factors remain to be determined. We examined ovary and fruit development of two sequenced cucumber genotypes with extreme differences in fruit size and shape, Chinese Long ‘9930’ (CL9930), and pickling type ‘Gy14’. Differences were observed in several independent factors that can influence size and shape: ovule number, rate and period of cell division in longitudinal and cross section in ovaries and fruit, timing and rate of fruit expansion in length and diameter, and cell shape. Level and timing of expression of select fruit growth stage marker genes and candidate fruit size gene homologs associated with cucumber fruit size and shape QTL were examined from 5-day pre-anthesis to 20-day post-pollination. Our results indicate that variation in fruit size and shape results from differences in cell number and shape in longitudinal and cross section, driven in turn by differences in orientation, timing, and duration of cell division and expansion, both pre- and post-anthesis, and suggest candidate genes contributing to determination of cucumber fruit size and shape.

425_2017_2721_Fig5_HTML.gif



O sałatkowe : F1 _ ciekawe jak sie rozlezie to w F2 ;) Mam chyba jeszcze moje F2 femi ogórka gdzieś : stare troche...

kukumis_sativus.jpg


cucumis hardwickii



o to jest ciekawe:

albo ten:

Quantitative trait loci for fruit size and flowering time‐related traits under domestication and diversifying selection in cucumber (Cucumis sativus)​

Abstract​


In cucumber, the genetic basis of traits under domestication and/or diversifying selection is not well understood. Here, we reported QTL mapping for flowering time and fruit size‐related traits with segregating populations derived from a cultivated × wild cross. Phenotypic data of flowering time (FT), fruit size (FS), fruit number (FN) and fruit weight per plant (FW) were collected in multiple environments. QTL analysis identified 19 QTL for these traits. We found that the major‐effect QTL FT1.1 played an important role in regulating flowering time in cultivated cucumber, whereas the minor‐effect QTL FT6.3 contributed to photoperiod sensitive flowering time during domestication. Two novel consensus FS QTL, FS1.4 and FS2.3, seem to be the targets of selection during breeding for the US processing cucumber. All other FS QTL were co‐localized with previously detected QTL using populations derived from cultivated cucumbers, suggesting that they were under selection during both initial domestication and subsequent improvement. Results from this study also suggested that the wild cucumber is a useful resource for capturing positive transgressive segregation and novel alleles that could be explored in cucumber breeding.

Transgresja : to co tygryski w wypadku Hodowli najbardziej kochają.

O jakie zróżnicowane:

kuku_na_muniu.jpg



niby nie jednakowe a mało zróżnicowane:







Backcross Introgression of the Cucumis hystrix Genome Increases Genetic Diversity in U.S. Processing Cucumber​

in Journal of the American Society for Horticultural Science

Jul 2010

Abstract​

The genetic base of commercial cucumber (Cucumis sativus L.) is extremely narrow (about 3%–8% polymorphism). Wide-based crosses within C. sativus [i.e., C. sativus var. sativus × C. sativus var. hardwickii (R.) Alef.] and interspecific hybridization attempts before 1995 have not substantially increased genetic diversity for plant improvement. However, in 1995, an amphidiploid (Cucumis hytivus Chen and Kirkbride) was derived from a C. sativus × Cucumis hystrix Chakr. mating. A derivative of this amphidiploid was used herein to broaden the genetic base of cucumber through backcross introgression [(C. sativus × C. hytivus) × C. sativus]. Initially, the combining ability of eight genetically diverse lines was investigated for days to anthesis (DA), sex expression (SEX), lateral branch number (LBN), fruit per plant (FP), fruit length:diameter ratio (L:D), and salt-processing ability [i.e., processed fruit color (exterior and interior), shape, and seed cavity characteristics]. Based on the combining ability, inbred backcross lines [IBL (BC2S3)] were developed from an original gynoecious determinate line WI 7023A [C. sativus (recurrent parent)] × monoecious indeterminate line WI 7012A (C. sativus × C. hytivus derived) mating, where 30 of 392 (8%) BC1 progeny were selected based on their diversity at 16 mapped marker loci. These progeny were used to develop BC2 progeny, which were then self-pollinated without further selection to produce 94 IBL. These IBL were genotyped and evaluated in the open field in two plantings in 2008 for DA, SEX, LBN, leaf size, FP, and L:D. The genetic distance (GD) between parental lines was 0.85, and the GD among IBL ranged between 0.16 and 0.75. Multivariate analyses indicated that IBL differed from parental lines and possessed considerable morphological and genotypic diversity that could be used to broaden the genetic base of commercial U.S. processing cucumber.
Keywords: Cucumis sativus; combining ability; marker assisted selection; morphological traits; multivariate analysis
The genetic diversity of cucumber [C. sativus (2n = 2x = 24)] market types and exotic germplasm (i.e., PIs) has been well documented and found to be extremely narrow [3%–8% polymorphisms among elite and exotic germplasm and 12% between botanical varieties C. sativus var. sativus and C. sativus var. hardwickii (Dijkhuizen et al., 1996; Horejsi and Staub, 1999; Meglic and Staub, 1996; Meglic et al., 1996; Miliki et al., 2003; Staub et al., 1997, 1999)]. This lack of genetic diversity has been an impediment to the genetic improvement of cucumber in several commercially important market classes (Staub et al., 2008).
Harlan and de Wet (1971) introduced the concept of gene pools (primary, secondary, and tertiary) to explain genetic diversity relationships within species. Primary gene pools consist of individuals that hybridize freely, produce viable offspring, and exhibit chromosome pairing and crossing-over in hybrid progeny (Harlan et al., 1973). In the case of C. sativus, the ≈1386 C. sativus var. sativus accessions and cross-compatible feral relatives (e.g., C. sativus var. hardwickii) resident in the U.S. National Plant Germplasm System (U.S. Department of Agriculture, 2010) are representative of its primary gene pool. The secondary gene pool of C. sativus includes cross-incompatible (e.g., wild African species) or sparingly cross-compatible (e.g., C. hystrix) species (Chen et al., 1997; Chung et al., 2006). The tertiary gene pool of cucumber consists of distantly related species from other genera or subgenera (e.g., Cucumis melo L. and Cucurbita L. spp.) that do not hybridize with cucumber (Chung et al., 2006; Staub et al., 1987, 1992c). Historically, attempts to exploit resources beyond the primary cucumber gene pool (e.g., C. melo, Cucumis metuliferus E. Mey ex Schrad.) have been unsuccessful or not repeatable (Staub et al., 1987, 1992c).
In 1995, Chen et al. successfully made an interspecific cross between C. sativus var. sativus [C (primary gene pool)] and C. hystrix [H (2n = 2x = 24, secondary gene pool) (Chen et al., 1997). Because the F1 progeny (2n = 2x = 19) derived from this mating were both male and female sterile, chromosome doubling was performed to produce a fertile amphidiploid (HHCC, 2n = 4x = 38) via somaclonal variation during in vitro embryo culture (Chen et al., 1998). This amphidiploid was subsequently self-pollinated for several generations, resulting in fertile germplasm that was designated a new species, C. hytivus (2n = 4x = 38) (Chen and Kirkbride, 2000).
The incorporation of genes from the secondary gene pool of cucumber such as C. hystrix is potentially important for plant improvement in this species. For instance, novel genes, such as those for disease resistance to gummy stem blight [causal agent Didymella bryoniae (Fuckel) Rehm.], can be found in C. hystrix, but are not present in cultivated cucumber (Chen et al., 2003). However, traits that negatively impact C. sativus yield or quality can also be introduced during introgression of the C. hystrix genome.
The inbred backcross breeding method (Wehrhahn and Allard, 1965) has shown potential for improving population diversity and yield among cucumbers (Owens et al., 1985). Backcrossing with concurrent initial molecular-based genotyping and selection for genetic diversity in C. sativus × C. hystrix-derived populations may be avenues for increasing genetic diversity in cucumber (Fan et al., 2006). Therefore, a project was designed to: 1) develop a genetically diverse array of C. hytivus-derived IBL in a U.S. processing cucumber genetic background and examine their morphological diversity, and 2) determine the stability of these IBL with regard to yield and quality component traits. The creation and genetic assessment of C. hytivus-derived IBL provides information and germplasm for the direct incorporation of novel genes into elite commercial cucumber germplasm.

Materials and Methods​

In Summer 2005, a North Carolina Design II combining ability evaluation of potential parental lines for IBL development was conducted in a field nursery [Plainfield loamy sand (Typic Udipasamment) soil] at the University of Wisconsin Experimental Station in Hancock, WI (UWESH) (Delannay, 2009). Based on the combining ability, lines WI 7023A and WI 7012A were chosen for crossing to develop IBL.
The determinate, gynoecious line WI 7023A (BC4S3) was created through selection and backcrossing [Gy-7 (recurrent parent, University of Wisconsin) and H19 (donor parent; University of Arkansas, Fayetteville)] to identify a small-statured genotype for once-over mechanical harvest operations. It originated from the same populations that were used to develop recombinant inbred lines for the mapping of quantitative trait loci in U.S. processing cucumber (Staub et al., 2002). The late flowering, indeterminate, monoecious line WI 7012A is a BC1S3 line derived from a C. hytivus × C. sativus [long-fruited Chinese C. sativus cv. Beijingjietou (recurrent backcross parent)] mating (Chen et al., 2003). The relatively high yielding, multiple lateral branching line WI 7012A produces warty, light-green fruit of commercially unacceptable shape and quality (Fig. 1).

cut:

Development of IBL.​

An F1 progeny derived from a WI 7023A (female parent) by WI 7012A (male parent) mating was backcrossed to WI 7023A to produce the BC1 generation. Tissue from young expanding leaves of 392 BC1 seedlings at the first leaf stage was collected and DNA was extracted according to Fazio et al. (2003).

Thirty BC1 individuals were selected (selection intensity equals about 8%) for pollination based on variation (i.e., heterozygosity) at 16 mapped SSR (4), SCAR (5), SNAP (6), and bacterial artificial chromosome (BAC)-end (1) marker loci (Table 2; Fazio et al., 2002, 2003; Nam et al., 2005). These selected BC1 individuals were pollinated by WI 7023A to produce BC2 progeny.

Inbred// back... oj.. Ogórek jest ogórek niezależnie jak ogórkowo by nie wyglądał.

dlaczego-ogorki-zapakowane-sa-w-folie_2016-11-11_19-27-57.jpg


ps: wlazłem na tube i poczytałem komenty ..

gosć ma fajnego Kota

lBLCOuFLK7UIDltOHbEzdbZjNWkwY3ule_XcV7b4UdgilvmFBohMwMzJu8V_SUeGVoDpePy2v4lcT7Q=w640-h640-p-nd-df


AB Werkt Instructional Video | Breeding Cucumber | English

 
Ostatnia edycja:

sub23

nudziarus offtopicus
Weteran
Rejestracja
Paź 6, 2018
Postów
5,172
Buchów
5,061
btw: jakos tak.. wracam do tego i nie wydaje mi się to wcale zabawne.
 



Z kodem HASZYSZ dostajesz 20% zniżki w sklepie Growbox.pl na wszystko!

nasiona marihuany
Góra Dół